Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
DifferentialinclusionsthetheoryinitiatedbyCracowMathematicalSchool
11
Notethat,forO=f:XY,thenotionofuppersemicontinuitycoincides
withthelowersemicontinuitywhichmeansnothingelsethanthecontinuity
off.
Inwhatfollows,wealsosaythatamultivaluedmapO:XOYiscontin-
uousmapifitisbothu.s.c.andl.s.c.
ThemostfamousselectiontheoremisthefollowingresultprovedbyE.A.
Michael.
THEOREM2.12(E.A.Michael).LetXbeaparacompactspace,EaBa-
nachspaceandO:XOEal.s.c.mapwithclosedconvexvalues.Thenthere
existsf:XE,acontinuousselectionofO(fO).
Wewouldliketopointoutthatinthefollowingpart,wewillpresentthe
Kuratowski–Ryll–Nardzewskiselectiontheoremfrequentlyusedinthetheory
ofdifferentialinclusions.
Apartfromsemicontinuousmultivaluedmappings,multivaluedmeasur-
ablemappingswillbeofthegreatimportanceinthesequel.Throughoutthis
section,weassumethatYisaseparablemetricspace,and(ΩjUjµ)isamea-
surablespace,i.e.,asetequippedwithσ-algebraUofsubsetsandacount-
ablyadditivemeasureµonU.Atypicalexampleiswhenisabounded
domainintheEuclideanspaceRk,equippedwiththeLebesguemeasure.
DEFINITION2.13.AmultivaluedmapO:OYwithclosedvaluesis
calledmeasurablemapifO11(V)U,foreachopenVY.
Inwhatfollows,weshallusethefollowingKuratowski–Ryll–Nardzewski
selectiontheorem.
THEOREM2.14(Kuratowki–Ryll–Nardzewski).LetYbeaseparablecom-
pletespace.TheneverymeasurableO:OYhasa(single-valued)measur-
ableselection.
Let=[0ja]beequippedwiththeLebesguemeasureandY=Rn.
DEFINITION2.15.AmapO:[0ja]×RnORnwithnonemptycom-
pactvaluesiscalledu-Carathéodorymap(resp.,l-Carathéodorymap;resp.,
Carathéodorymap)ifitsatisfies:
(1)tOO(tjx)ismeasurable,foreveryxRn,
(2)xOO(tjx)isu.s.c.(resp.,l.s.c.;resp.,continuous),foralmostallt
[0ja],
(3)|y|µ(t)(1+|x|),forevery(tjx)[0ja]×Rn,yO(tjx),where
µ:[0ja][0j+)isanintegrablefunction.