Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
Commonfixedpointresultswithapplications...
11
Corollary3.LetEbeanonemptyclosedqstarshapedsubsetofconvex
completemetricspaceXandTandSbeCqcommutingmappingson
E{q}suchthatS(E)=EandT(E{q})S(E{q}),whereqF(S).
SupposethatTiscontinuousasymptoticallySnonexpansivewithsequence
{kn}andSisaffineonE.Foreachnł1,defineamappingTnonEby
Tnx=W(Tnxjqj0n),where0n=
An
kn
and{An}isasequencein(0j1)with
n→∞
lim
An=1.ThenforeachnN,F(Tn)F(S)issingleton.
Theorem4.LetEbeanonemptyclosedqstarshapedsubsetofconvex
metricspaceX,andTandSbecontinuousselfmappingsonEsuchthat
S(E)=EandT(E{q})S(E{q}),qF(S).SupposeTisuniformly
asymptoticallyregular,asymptoticallyS-nonexpansive,andSisaffineon
E.Ifcl(E{q})iscompactandSandTareuniformlyCqcommuting
mappingsonE{q}.ThenF(T)F(S)isasingletoninE.
Proof.FromTheorem3,foreachnNjF(Tn)F(S)issingletonin
E.Thus,
Sxn=xn=W(Tnxnjqj0n).
Also,
d(xnjT
nxn)=d(W(Tnxnjqj0n)jTnxn))
(10n)d(qjTnxn)(10n)d(qjTnxn).
SinceT(E{q})isbounded,d(xnjTnxn)0asn.Now,
d(xnjTxn)d(xnjTnxn)+d(TnxnjTn+1xn)+d(Tn+1xnjTxn)
d(xnjTnxn)+d(TnxnjTn+1xn)+k1d(STnxnjSxn)
d(xnjTnxn)+d(TnxnjTn+1xn)+k1d(STnxnjSW(Tnxnjqj0n))
d(xnjTnxn)+d(TnxnjTn+1xn)+k1d(STnxnjW(STnxnjqj0n))
d(xnjTnxn)+d(TnxnjTn+1xn)+k1(10n)d(STnxnjSq)
d(xnjTnxn)+d(TnxnjTn+1xn)+k1(10n)d(STnxnjSq)j
whichimpliesthat,d(xnjTxn)0,asn.Ascl(E{q})iscompact
andEisclosed,thereexistsasubsequence{xn
i}of{xn}suchthatxn
i
xoEasi.ThecontinuityofTimpliesthatT(xo)=xo.Since
T(E{q})S(E{q}),itfollowsthatxo=T(xo)=SgforsomegE.
Moreover,
d(Txn
ijTg)k1d(Sxn
ijSg)=k1d(xn
ijxo).
Takingthelimitasi,wegetTxo=Tg.ThusTxo=Sg=Tg=xo.
SinceSandTareuniformlyCqcommutingonE{q},andgC(SjT),
d(TxojSxo)=d(TSgjSTg)=0.