Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
38
Measuresofnon-compactness
1
D(B)=D({x1
,
...
,
xk−1}Bk)=D(Bk)<D(Ak)
.Since
k
lim
D(Ak)=
0,weinferthat
D(B)=
0,andthereforetheset
B
isrelativelycompact
in
X
.Thisimpliesthatthesequence
(xn)nN
includesasubsequence
(xn
l)lN
convergentin
X
tosomepoint
x0
.Wewillprovethat
x0A
.
Foranarbitrary
mN
,letuschoose
l0N
insuchawaythat
nl
0>m
.
Then,
xn
lAn
lAm
for
l>l0
.Since
Am
isaclosedset,thisimplies
that
x0Am
.Consequently,asthepositiveinteger
m
wasarbitrary,
weinferthatx0A.
Since
AAm
,wehave
D(A)<D(Am)
forany
mN
.Hence,
D(A)=
0.Thismeansthat
A
isarelativelycompactsubsetof
X
.Since
itisclosed(astheintersectionofafamilyofclosedsets),itisalso
compact.
Now,letusassumethatforany
nN
theset
An
isconnected,
but
A
isnot.Thismeansthatthereexisttwonon-empty,closedand
disjointsubsets
F1
and
F2
of
X
suchthat
A=F1F2
.Also,wemay
findtwoopenanddisjointsubsets
G1
and
G2
of
X
suchthat
F1G1
andF2G2(see[100,Section1.5andCorollary4.1.13]).
Wewillshowthatthereisanindex
nN
suchthat
AnG
,
where
G:=G1G2
.Supposeonthecontrarythatforany
nN
thereexistssomepoint
xnAn\G
.(Noticethateventhoughhere
wetalkaboutthesequence
(xn)nN
andthepoint
x0
andusethem
inasimilarwayasinthefirstpartoftheproof,theyaredifferent
andunrelatedentities!)Inviewoftheassumptionaboutthesequence
(An)nN
andusingareasoningidenticaltotheoneatthebeginning
oftheproof,weinferthatthesequence
(xn)nN
hasasubsequence
(xn
l)lN
convergenttosomepoint
x0
.Itisclearthat
x0A\G
.Since
AG
,weobtainacontradiction.Hence,weconcludethatthereexists
nNsuchthatAnG.
As
AAn
,thesets
AnG1
and
AnG2
arenon-empty.Moreover,
theyaredisjointandopenin
An
,and
An=(AnG1)(AnG2)
.
ThismeansthatthesetAnisnotconnectedacontradiction.Hence,
thesetAisalsoconnected.
1010330Corollary
(Cantor’stheorem)
0
Let
(An)nN
beanon-increasing