Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
14
Preliminaries
101020Booleanalgebras
Booleanalgebracanbeintroducedasageneralizationofafieldofaset.
Considerasystem
A=(A,+,·,,0,1),
whereAisanonemptyset,"+","·"arebinaryoperationsonA,""is
aunaryoperationonA,and0and1aresome(fixed)distinctelements
ofA.ThesystemAiscalledaBooleanalgebraifforarbitraryelements
ł,b,cAthefollowingaxioms(calledBooleanaxioms)aresatisfied
(1)ł+b=b+ł
(2)ł+(b+c)=(ł+b)+c
(3)ł·(b+c)=(ł·b)+(ł·c)
(4)ł+0=ł
(5)ł+(ł)=1
ł·b=b·ł
ł·(b·c)=(ł·b)·c
ł+(b·c)=(ł+b)·(ł+c)
ł·1=ł
ł·(ł)=0
Operations"+"and"·"arecalledBooleansumandBooleanproduct,
respectively.Operation""iscalledBooleancomplementation.0and1
arecalledBooleanzeroandBooleanunit,respectively.
Followingtheorderingonfields,thereisintroducedBooleanordering
onA:foranył,bA
łbiffł+b=biffł·b=ł.
Therelation""partiallyordersA.
ThenexttheoremisessentialintheBooleanalgebratheory.
Theorem101(StoneRepresentationTheorem[41])EveryBooleanalge-
braisisomorphictoafieldofsets.
10103Quotientalgebras
LetAbeaBooleanalgebra.AnidealIonAisasubsetofAsuchthat
(1)0I,1̸∈I;