Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
104Topologicalderivativeformixedsemilinearellipticproblemintwo...
23
Usingthisassumptionleadstotherelation:
|J(uE;(E))J(v;(E))
(w(E1x)+Ev(x)+ˆ
uE(x))J
v(x,v(x))dx|
(E)
c
|w(E1x)+Ev(x)+ˆ
uE(x)|1+σdx
(E)
c
(|
|
|
E
x
|
|
|
1σ
+|x|(1+σ)(β2α)
(E)
×(E1+σv;Λ2,α
β()1+σ+ˆ
uE(x);Λ2,α
β()1+σ))dx
cE1+σ(
\
E
1
r1σr2dr+
E
1
r(1+σ)(β2α)r2dr(E1+σ+E(1+K)(1+σ)\
)
cE1+σ.
Herewehavetakenintoaccountthat1+σ2,(1+σ)(β2α)2,andboth
theintegrals,extendedontheinterval(0,1),doconverge.
Itsufficestomentionthefollowinginequalities:
|J(uE;(E))J(v;)|cmes3(ωE)cE3,
1
|w(E1x)+aEo(x)||J
v(x,v(x))|dxc
(
E)
r
2
rdrcE2,
(E)
E
|ˆ
uE||J
v(x,v(x))|dxcE1+K
|x|(β2α)dxcE1+K.
(E)
(E)
Thisconfirmstheformalcalculationsperformedabove.Letusformulatethemain
resultinthreedimensions.
Theorem40Undertheassumptionslistedabove,wehave:
|J(uE;(E))J(v;)+E4πv(O)p(0)cap(ω)|cE1+min(σ,K).
104Topologicalderivativeformixedsemilinearel-
lipticproblemintwospatialdimensions
Thenumericalanalysisisperformedintwospatialdimensions.Therefore,we
introduceamixedsemilinearproblemandanalyzetheasymptoticinsuchacase.