Treść książki

Przejdź do opcji czytnikaPrzejdź do nawigacjiPrzejdź do informacjiPrzejdź do stopki
104Topologicalderivativeformixedsemilinearellipticproblemintwo...
25
Thesecondtermw1intheasymptoticansatz(1.38)becomesasolutionofthe
exteriorproblem:
{ęw1(ę)=0,
an(ę)w1(ę)=an(ę)ę
Txv(O),ę,
ęR2\ω,
(1.39)
Suchasolutionadmitstheasymptoticrepresentation:
w1(ę)=
2π
1
|ę|2
ęT
m(ω)xv(O)+O(|ę|
2),|ę|,
wheremdenotesthevirtualmassmatrix,see[31].
Letusdenote:
F(x,V(x))=F(x,v(x)+V(x))F(x,v(x))V(x)F
v(x,v(x)).
sothat:
(1.40)
FE(x;ˆ
ˆ
uE)=F(x,w(E1x)+Ev(x)+ˆ
uE(x))
(1.41)
+(w(E1x)+Eao(x)+ˆ
uE(x))F
v(x,v(x)).
Thenthethirdtermw2in(1.41)satisfiestheproblem:
{
ęw2(ę)=0,
an(ę)w2(ę)=an(ę)
1
2ęTxv(O)ę,ę,
ęR2\ω,
(1.42)
Forsuchasolution,wewritedowntheclassicalasymptoticrepresentation:
w2(ę)=
2π
c
ln
|ę|
1
+O(
|ę|
1
)|ę|,
wheretheconstantcintheaboverelationcanbecalculatedasfollows:
an(ę)w2(ę)dsę=
a|ę|
a
2π
c
ln
|ę|
1
dę=c.
aBR
BytheGreenformula,wecomputetheleftboundaryintegral:
(1.43)
an(ę)
1
2
ęT2
xv(O)ędsę=
ę
1
2
ęT2
xv(O)ędę
(1.44)
ω
=mes2ω∆xv(O)=mes2ωF(O;v(O)).
Finally,thefourthtermvin(1.41)istobefoundfromtheDirichletproblem:
(
I
I
I
I
xv(x)=(
2π
1
|x|2
xT
m(ω)xv(O)
2π
1
ln
|x|
E
mes2ωF(O;v(O))
4
+v(x))F
v(x,v(x)),
x,
I
I
I
v(x)=
2π
1
|x|2
xT
m(ω)xv(O)+
2π
1
ln
|x|
E
mes2ωF(O;v(O),
I
xaΩ,
l
(1.45)